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We revisit the well-known issue of representing an overdamped drift-and-diffusion system by an equivalent
lattice random-walk model. We demonstrate that commonly used Monte Carlo algorithms do not conserve the
diffusion coefficient when a driving field of arbitrary amplitude is present, and that such algorithms would
actually require fluctuating jumping times and one clock per Cartesian direction to work properly. Although it
is in principle possible to construct valid algorithms with fixed time steps, we show that no such algorithm can
be used in more than two dimensions if the jumps are made along only one axis at each time step.
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Diffusion plays a key role in numerous physical, chemi-
cal, and biological systems[1]. When an analytical solution
to the diffusion equation cannot be obtained, it is common to
replace an overdamped continuous diffusion problem by
Monte Carlo(MC) simulations of the random walk of a par-
ticle on a lattice. We recently derived a mathematical method
that provides the exact solution of the standard lattice Monte
Carlo (LMC) algorithm rewritten as coupled Master equa-
tions [2]. The method actually calculates the exact mobility
m of the random walker when a vanishing external force
sF→0d is applied; the Nernst-Einstein relation between the
diffusion coefficientD andm then yieldsD even in the pres-
ence of obstacles and complicated boundary conditions. It is
important to note, however, that the Nernst-Einstein relation
is only valid in theF→0 limit. Another exact method was
also suggested by Dorfman[3].

More recently[4], we developed a generalized LMC al-
gorithm, and the corresponding exact calculation method, in
order to compute field-dependent mobilitiesmsFd for arbi-
trary values ofF. However, as we will discuss below,DsFd is
quite subtle. In fact, it is astonishing to note that, although
hundreds of LMC studies have been published over the
years, none of these recover the right diffusion coefficient for
a free particle under the influence of a strong bias. Standard
algorithms are effectively limited to small forcesF; e.g., this
is the case for the popular repton model of gel electrophore-
sis [5] and for a recent study of diffusion effects in a microf-
luidic device[6]. In many studies of diffusion in porous sys-
tems, however, the chosen LMC algorithm is in fact quite
generic, because the authors are not trying to map a real
diffusion system onto a lattice random-walk problem; in such
cases, the time scale is generally not field dependent and it is
not clear how the quantitative results can be interpreted in
terms of real physical systems. In other cases, the simulation
results are apparently limited to small biases, although it is
not always explicitly mentioned(see, e.g.,[[7–10]]). For in-
stance, one can look at the problem of thesurvivalprobabil-
ity of a biased random walker in a disordered medium
[11,12]. Biased random walks can also be studied in the con-

text of continuous time random walks(CTRW) [13,14].
Again, CTRW articles appear to be restricted to small biases.
In this article, we will only consider discrete time random-
walks.

Drift in one dimension (1D). Our objective is to derive a
valid LMC model that reproduces the mean dynamical prop-
erties of a Brownian particle moving in a fluid under the
influence of an external forceF. For instance, it must re-
cover, in the overdamped limit(no acceleration and no tur-
bulence), the free-solution velocityv0=F /j0 and the field-
independent diffusion coefficientD0=kBT/j0, wherej0 is the
particle’s friction coefficient,kB is Boltzmann’s constant, and
T is the temperature[15]. In order to use LMC algorithms to
study the migration of(pointlike) particles in continuous
space, we first discretize space. In 1D, the continuous motion
of the particle is replaced by a series of discrete jumps be-
tween sites separated by a distancea. Let p± be the prob-
abilities for a particle to move to the two adjacent sites(1
and2) andt be the time duration of such a jump. Comple-
tion of a jump is similar to a first-passage problem between
two absorbing walls, as shown in Fig. 1. IfF=0, the prob-
abilitiesp±= 1

2 are unbiased and the mean time durationtB of
a jump (also called the Brownian time or the mean first-
passage time) is related toD0 via tB=a2/2D0. WhenF.0,
however, the transition probabilities are biased and the jumps
take less timeftsFd,tBg. Fortunately, exact analytical ex-
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FIG. 1. Brownian particle diffusing between two absorbing
walls. The values oftsed andp±sed can be obtained either exactly or
numerically. In the latter case, the simulation steps are(1) placing
the particle at a distancea from each wall,(2) letting it diffuse, via
Brownian dynamics, until it reaches a wall, and(3) restarting the
process from the new site.
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pressions can be obtained for this first-passage problem
[16–18] (see Fig. 1). The relevant variable here is the scaled
external forcee=Fa/2kBT. At each step, the particle moves
to one of the two neighboring sites(denoted1 and 2 for
parallel and antiparallel to the forceF, respectively) follow-
ing the probabilities[19]

p±sed =
1

1 + e72e , s1d

while the mean time duration of each jump is[19]

tsed =
tanhe

e
tB. s2d

Remarkably, the transition timet is the same for both direc-
tions. In fact,t is the duration of a successful MC jump in a
given direction(6), and not the mean time between success-
ful jumps in a fixed direction. The mean free-solution veloc-
ity is then

v0 =
sp+ − p−da

t
=

ea

tB
=

Fa2

2kBT

2D0

a2 =
F

j0
, s3d

as it should be for an overdamped system[15]. The free-
solution diffusion coefficientD0 can be obtained from the
variancekDx2l of the displacement during a time stept and
the jump probabilitiesp± via the first fkxl=asp+−p−dg and
secondfkx2l=a2sp++p−dg moments,

D0 =
kDx2l

2t
=

kx2l − kxl2

2t
=

a2

2tB
S e

sinhe coshe
D . s4d

However, sinceD0 characterizes the spreading of the par-
ticles around their mean position, it cannot depend onF
[while the velocity must increase linearly withF, as shown
by Eq. (3)]. Therefore, Eq.(4) is clearly incorrect whene
Þ0 (see also, Fig. 2). This demonstrates that, even without
collisions with obstacles, simple LMC algorithms fail to

properly model diffusion in the presence of a net drift. In
fact, it is not possible to derive a time steptsed and prob-
abilities p±sed that generate the proper free flow velocityv0

and diffusion coefficientD0 simultaneously.
Time-step fluctuations in 1D. This failure is due to the

fact that Eq.(4) only considers the spatial fluctuationskDx2l
of the particles’ biased Brownian motion. However, a second
source of diffusion has to be considered ifeÞ0: the fluctua-
tions in the time durationt of a jump. In the presence of a
bias, both types of fluctuations have to be considered in the
calculation of the diffusion coefficient[19,20]

D0 =
kDx2l

2t
+

v0
2kDt2l
2t

. s5d

The variance of the jumping time,kDt2l, can also be calcu-
lated for the 1D first-passage problem[19],

kDt2l =
tanhe − e sech2e

e3 tB
2 . s6d

The second term of Eq.(5) then reduces to

v0
2kDt2l
2t

=
a2

2tB
S1 −

e

sinhe coshe
D . s7d

Clearly, adding Eqs.(4) and (7), as suggested by Eq.(5),
gives D0=a2/2tB, which agrees with the continuum result
[15],

D0 =
a2

2tB
=

ea

tB

kBT

F
=

v0kBT

F
=

kBT

j0
. s8d

Therefore, a fluctuating jumping timet is essential if a
LMC model (or algorithm) is to be used to study the diffu-
sion of particles in the presence of a drift. This is the reason
why all fixed time step MC algorithms fail at high field. We
can introduce these temporal fluctuations using any distribu-
tion function that has the right mean value and variance[Eqs.
(2) and (6)]. In a simulation, this condition can be easily
satisfied by changing the fixed time stept by the random
incrementt±ÎkDt2l (with a randomly chosen sign). The
well-known problem of enhanced diffusion in porous media
can also be solved using Eq.(5) [20]; in such cases, the
effect is due to the retardation of the particles that collide
with obstacles during their net drift. We showed that even
without such collisions, one must take into account the natu-
ral fluctuations of the mean-first passage times of the lattice
jumps, since these jumps are like pseudocollisions intro-
duced by the process of mapping a continuous process onto a
discrete lattice. This seems to have been largely overlooked
in the field.

Time-step fluctuations in dù−2D. This fluctuating one-
dimensional LMC algorithm can be generalized to multidi-
mensional simulations. This can be done in various ways, but
we suggest the following algorithm for each step(or jump).
(1) First, an axis is selected with a probability inversely pro-
portional to the mean jumping time along this axis. Since the
field e must be along a Cartesian axis, this time is given by
tsedøtB along ê, and by tB along all other directions. In
other words, the faster the process is along a particular axis,

FIG. 2. Free-solution diffusion coefficientD0 (in units of
a2/2tB) vs the scaled fielde. The points were obtained from Monte
Carlo simulations of 1 000 000 particles evolving on a square lat-
tice. Error bars are smaller than the points.
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the more often this dimension is selected.(2) The actual
jump is then selected using Eq.(1) (wheree=0 if the jump is
'ê). As usual, if the destination site is an obstacle, the par-
ticle simply remains on the same lattice site.(3) Finally, in
order to recover the proper diffusion coefficient along the
field axis, the clock advances by the random increment
t±ÎlDt2l only when the jump was made alongê. Note that
since the second term of Eq.(5) is zero in the other direc-
tions, we do not really need clocks for transverse jumps;
indeed, theê clock provides the proper mean elapsed timet
for all directions. The diffusion coefficient in directioni (in-
cluding i = ê) is then obtained using the simple relationDi
=kDr i

2l /2t.
An algorithm with constant time steps in1D. As we

demonstrated above, time fluctuations must be part of a
LMC simulation if eÞ0. However, exact numerical tech-
niques[3,4] require a fixed time step to allow us to solve the
LMC algorithm exactly. A constant time step can also sim-
plify MC simulations. We now show how temporal fluctua-
tions can be introduced without changing the time increment:
we simply add a probability to remain on the same lattice site
at each MC step. Usually, an LMC particle must make one
jump at each time step. Let us now introduce a probabilitys8
for the particle to remain immobile. The new transition prob-
abilities p±8 and time durationt8 are given by

p±8 = s1 − s8dp±, t8 = s1 − s8dt. s9d

Both quantities must be rescaled by the same factor in order
to conserve the value of the free-solution velocityv0. Then,
at each time step of fixed durationt8, the particle either
jumps to one of the6 sites(with probabilitiesp±8) or stays on
the same site with probabilitys8. The idea here is to use the
probability s8 as a free parameter that we fix, such that we
obtain the desired variance for the averagereal jumping
time. The average periods of timektl and kt2l between two
successful jumps are

ktl = s1 − s8dt8o
i=1

`

is8i−1 =
t8

1 − s8
= t, s10d

kt2l = s1 − s8dt82o
i=1

`

i2s8i−1 = s1 + s8dt2. s11d

Using Eqs.(2), (6), (10), and(11), the required probabilitys8
is

s8 =
kt2l − ktl2

ktl2 =
kDt2l

t2 =
cothe

e
− csch2 e. s12d

We can now evaluate the free-solution diffusion coefficient
D0 using only the spatial part of Eq.(5) (first term),

D0 =
a2

2t8
fp+8 + p−8 − sp+8 − p−8d2g =

a2

2tB
. s13d

Note that we usedkDx2l8=kx2l8−kxl82, kx2l8=a2sp+8+p−8d,
andkxl8=asp+8−p−8d. Using implicit time fluctuations through
the probabilitys8 allows us to obtain the correct result[Eq.
(8)] without relying on explicit fluctuations and the second

term of Eq.(5). Figure 2 compares conventional MC-biased
random walks[Eqs.(1) and(2)] and our new algorithm[Eqs.
(9) and (12)].

Using Eqs.(9) and (12), one can design reliable LMC
algorithms with fixed time steps. Please remark that the
probability to stay put[Eq. (12)] is the only solution that
gives the correct results for bothv0 and D0 for arbitrary
values ofe when we want the ratiop+/p− to be consistent
with Boltzmann statistics. Therefore, no valid fixed-time
LMC algorithm exists withs8=0. The idea of waiting time in
a random walk was also introduced by Montroll and Weiss
[13] in the context of CTRW.

An algorithm with constant time steps in dù2D. In a
recent article[4], we showed how to use Eqs.(1) and(2) to
obtain the exact field-dependent velocityvsed of a particle
for dù2 systems. Our approach[4] was to derive a unique
transition timeT valid for all directions, as well as the cor-
responding(modified) transition probabilities that agree with
the net transition rates predicted for each of thed 1D prob-
lems. We found that the period between each jump must be
given by [4]

T = tBfd − 1 +e cotheg−1, s14d

while the transition probabilities along the field axis and in
each of the transverse directions are given by[4]

P± = hs1 + e72edfe + sd − 1dtanheg/ej−1, s15d

P' = f2sd − 1 +e cothedg−1. s16d

We showed[4] that these probabilities(P± andP') and time
duration sTd give the proper orthogonal diffusion coeffi-
cients. However, this approach cannot produce the right free-
solution diffusion coefficient alongê, since it only uses spa-
tial fluctuations. We thus have to generalize the approach
presented in the previous section.

Again, we will add a probability to stay putsS8d for a
period of timesT8d in order to introduce implicit fluctuations
in the net transition time in the field direction. The elements
of this LMC algorithm are thus

P±8 = aP±, P'8 = aP', T8 = aT, s17d

with a=s1−S8d. As far as motion along the field axisê is
concerned, this is essentially a 1D problem. Indeed, lateral
jumps (described by the probabilitiesP'8 for each of thed
−1 nonbiased directions) are equivalent to staying put along
ê. Therefore, the total probability of nonmotion alongê in d
dimensions must be equal to the probabilitys8 to stay put in
one dimension,

s8 = S8 + 2sd − 1dP'8 = S8 + 2sd − 1ds1 − S8dP'. s18d

Solving this relation forS8 gives

S8 = sd − 1de−2 − sd − 2de−1 cothe − csch2 e. s19d

The free-solution diffusion coefficient parallel(i) to the di-
rection of the fieldsêd is then obtained as described previ-
ously in Eq.(13) [using Eqs.(17) and (19)],
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D0i
=

a2

2T8
fP+8 + P−8 − sP+8 − P−8d2g =

a2

2tB
. s20d

This relation will be valid as long as the field is along one of
the Cartesian axes. We also stress the fact that the probability
to stay put neither affects the calculation of the velocity nor
the diffusion coefficient along the orthogonal axes. Although
this appears to be the perfect solution to the diffusion prob-
lem, there is a major limiting problem: the probabilityS8 is
negative fordù3. In fact, since the solution forS8 is unique
when we impose a first-passage time interpretation to the
dynamics along the field axis(necessary to reproduce Kram-
ers statistics), we must conclude thatit is impossible to de-
sign a fixed time-step LMC algorithm that would reproduce
both v0 and D0 in more than two dimensions.

This limitation can be understood when we start from the
1D problem and the relation 2sd−1dP'8 +S8=s8. When we go
from 1D to 2D, we reduce the probability to stay put to
generate lateral motion. When we go to higher dimensions,
we reduceS8 further. Obviously, this approach has to be
limited to a maximum number of dimensions. Unfortunately,
this limit is d=2 for all MC square lattice algorithms with
jumps made along a single axis per time step, which is very
restrictive indeed.

Incidentally, most LMC algorithms commonly used for
computer simulations involve low-field approximations of
Eqs.(14)–(16). For example, a familiar approach[7] is to use
P± ~1±e and a constant time step, which is precisely the

first-order approximation of the results derived above. Other
algorithms, such as the repton model[5], use a field-
dependent time step but are valid only up toOse2d.

Discussion. In summary, we demonstrated that temporal
fluctuations must be included in lattice random-walk models
if the latter are to represent continuous biased diffusion pro-
cesses. These fluctuations can be introduced in LMC simu-
lations if we replace the constant time step by a stochastic
one. We showed how to do this in 1D systems, which is
sufficient to perform simulations in any dimension if the
clock then advances only when the moves are along the field
axis. Our approach allows for the study of the diffusion co-
efficient for arbitrary fields(note that arbitrary field also
means arbitrary coarsening of the lattice mesh size, sincee is
the relevant field). However, it may be advantageous to have
a constant time increment, for example, to use exact methods
[3,4] instead of stochastic simulations. We showed how to
obtain the value of the probability to stay putss8d that gives
the right time variance for 1D systems, and we demonstrated
that this solution is unique. Unfortunately, this approach can-
not be generalized to more than 2D becauseS8 is then nega-
tive. This means that we have to revise the fundamental as-
sumptions of lattice random-walk algorithms.
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